Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Biol Chem ; 299(6): 104831, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2315850

RESUMEN

Viral proteases play key roles in viral replication, and they also facilitate immune escape by proteolyzing diverse target proteins. Deep profiling of viral protease substrates in host cells is beneficial for understanding viral pathogenesis and for antiviral drug discovery. Here, we utilized substrate phage display coupled with protein network analysis to identify human proteome substrates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteases, including papain-like protease (PLpro) and 3C-like protease (3CLpro). We first performed peptide substrates selection of PLpro and 3CLpro, and we then used the top 24 preferred substrate sequences to identify a total of 290 putative protein substrates. Protein network analysis revealed that the top clusters of PLpro and 3CLpro substrate proteins contain ubiquitin-related proteins and cadherin-related proteins, respectively. We verified that cadherin-6 and cadherin-12 are novel substrates of 3CLpro, and CD177 is a novel substrate of PLpro using in vitro cleavage assays. We thus demonstrated that substrate phage display coupled with protein network analysis is a simple and high throughput method to identify human proteome substrates of SARS-CoV-2 viral proteases for further understanding of virus-host interactions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteasas Virales , Humanos , Péptido Hidrolasas/metabolismo , Proteoma , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo
2.
J Nat Prod ; 86(2): 264-275, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2185476

RESUMEN

In this study, an integrated in silico-in vitro approach was employed to discover natural products (NPs) active against SARS-CoV-2. The two SARS-CoV-2 viral proteases, i.e., main protease (Mpro) and papain-like protease (PLpro), were selected as targets for the in silico study. Virtual hits were obtained by docking more than 140,000 NPs and NP derivatives available in-house and from commercial sources, and 38 virtual hits were experimentally validated in vitro using two enzyme-based assays. Five inhibited the enzyme activity of SARS-CoV-2 Mpro by more than 60% at a concentration of 20 µM, and four of them with high potency (IC50 < 10 µM). These hit compounds were further evaluated for their antiviral activity against SARS-CoV-2 in Calu-3 cells. The results from the cell-based assay revealed three mulberry Diels-Alder-type adducts (MDAAs) from Morus alba with pronounced anti-SARS-CoV-2 activities. Sanggenons C (12), O (13), and G (15) showed IC50 values of 4.6, 8.0, and 7.6 µM and selectivity index values of 5.1, 3.1 and 6.5, respectively. The docking poses of MDAAs in SARS-CoV-2 Mpro proposed a butterfly-shaped binding conformation, which was supported by the results of saturation transfer difference NMR experiments and competitive 1H relaxation dispersion NMR spectroscopy.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Proteasas Virales , SARS-CoV-2 , Péptido Hidrolasas , Antivirales , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas
3.
Nat Commun ; 13(1): 6375, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2185822

RESUMEN

Since its onset in December 2019, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, has caused over 6.5 million deaths worldwide as of October 2022. Attempts to curb viral transmission rely heavily on reliable testing to detect infections since a large number of transmissions are carried through asymptomatic individuals. Many available detection methods fall short in terms of reliability or point-of-care applicability. Here, we report an electrochemical approach targeting a viral proteolytic enzyme, 3CLpro, as a marker of active infection. We detect proteolytic activity directly from untreated saliva within one minute of sample incubation using a reduction-oxidation pH indicator. Importantly, clinical tests of saliva samples from 50 subjects show accurate detection of SARS-CoV-2, with high sensitivity and specificity, validated by PCR testing. These, coupled with our platform's ultrafast detection, simplicity, low cost and point-of-care compatibility, make it a promising method for the real-world SARS-CoV-2 mass-screening.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Saliva , Reproducibilidad de los Resultados , Electrónica , Proteasas Virales
4.
J Med Chem ; 65(24): 16252-16267, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2160140

RESUMEN

The two proteases, PLpro and Mpro, of SARS-CoV-2 are essential for replication of the virus. Using a structure-based co-pharmacophore screening approach, we developed a novel dual-targeted inhibitor that is equally potent in inhibiting PLpro and Mpro of SARS-CoV-2. The inhibitor contains a novel warhead, which can form a covalent bond with the catalytic cysteine residue of either enzyme. The maximum rate of the covalent inactivation is comparable to that of the most potent inhibitors reported for the viral proteases and covalent inhibitor drugs currently in clinical use. The covalent inhibition appears to be very specific for the viral proteases. The inhibitor has a potent antiviral activity against SARS-CoV-2 and is also well tolerated by mice and rats in toxicity studies. These results suggest that the inhibitor is a promising lead for development of drugs for treatment of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Ratas , Papaína , Cisteína Endopeptidasas/química , Proteínas no Estructurales Virales , Péptido Hidrolasas , Proteasas Virales , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular
5.
Microbiol Spectr ; 10(5): e0232222, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2053139

RESUMEN

Over the last 2 years, several global virus-host interactome studies have been published with SARS-CoV-2 proteins with the purpose of better understanding how specific viral proteins can subvert or utilize different cellular processes to promote viral infection and pathogenesis. However, most of the virus-host protein interactions have not yet been confirmed experimentally, and their biological significance is largely unknown. The goal of this study was to verify the interaction of NSP5, the main protease of SARS-CoV-2, with the host epigenetic factor histone deacetylase 2 (HDAC2) and test if HDAC2 is required for NSP5-mediated inhibition of the type I interferon signaling pathway. Our results show that NSP5 can significantly reduce the expression of a subset of immune response genes such as IL-6, IL-1ß, and IFNß, which requires NSP5's protease activity. We also found that NSP5 can inhibit Sendai virus-, RNA sensor-, and DNA sensor-mediated induction of IFNß promoter, block the IFN response pathway, and reduce the expression of IFN-stimulated genes. We also provide evidence for HDAC2 interacting with IRF3, and NSP5 can abrogate their interaction by binding to both IRF3 and HDAC2. In addition, we found that HDAC2 plays an inhibitory role in the regulation of IFNß and IFN-induced promoters, but our results indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß gene expression. Taken together, our data show that NSP5 interacts with HDAC2 but NSP5 inhibits the IFNß gene expression and interferon-signaling pathway in an HDAC2-independent manner. IMPORTANCE SARS-CoV-2 has developed multiple strategies to antagonize the host antiviral response, such as blocking the IFN signaling pathway, which favors the replication and spreading of the virus. A recent SARS-CoV-2 protein interaction mapping revealed that the main viral protease NSP5 interacts with the host epigenetic factor HDAC2, but the interaction was not confirmed experimentally and its biological importance remains unclear. Here, we not only verified the interaction of HDAC2 with NSP5, but we also found that HDAC2 also binds to IRF3, and NSP5 can disrupt the IRF3-HDAC2 complex. Furthermore, our results show that NSP5 can efficiently repress the IFN signaling pathway regardless of whether viral infections, RNA, or DNA sensors activated it. However, our data indicate that HDAC2 is not involved in NSP5-mediated inhibition of IFNß promoter induction and IFNß gene expression.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , SARS-CoV-2 , Histona Desacetilasa 2/metabolismo , Interleucina-6 , Transducción de Señal , Interferón beta/genética , Interferón beta/metabolismo , Interferones , Proteínas Virales/genética , Antivirales/farmacología , Péptido Hidrolasas/metabolismo , ADN , ARN , Proteasas Virales , Interferón Tipo I/metabolismo
6.
Anal Chem ; 94(37): 12699-12705, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2016502

RESUMEN

Reporting the activity of a specific viral protease remains an acute need for rapid point-of-care detection strategies that can distinguish active infection from a resolved infection. In this work, we present a simple colorimetric approach for reporting the activity of a specific viral protease through direct color conversion on a cotton swab, which has the potential to be extended to detect the corresponding virus. We use SARS-CoV-2 viral protease as a proof-of-concept model system. We use 4-aminomalachite green (4-AMG) as the base chromophore structure to design a CoV2-AMG reporter, which is selective toward the SARS-CoV-2 Mpro but does not produce any observable color change in the presence of other viral proteases. The color change is observable by the naked eye, as well as smartphone imaging, which affords a lower limit of detection. The simplicity and generalizability of the method could be instrumental in combating future viral outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Colorimetría/métodos , Humanos , Péptido Hidrolasas , Proteasas Virales
7.
Antiviral Res ; 201: 105272, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1729532

RESUMEN

Effective drugs against SARS-CoV-2 are urgently needed to treat severe cases of infection and for prophylactic use. The main viral protease (nsp5 or 3CLpro) represents an attractive and possibly broad-spectrum target for drug development as it is essential to the virus life cycle and highly conserved among betacoronaviruses. Sensitive and efficient high-throughput screening methods are key for drug discovery. Here we report the development of a gain-of-signal, highly sensitive cell-based luciferase assay to monitor SARS-CoV-2 nsp5 activity and show that it is suitable for the screening of compounds in a 384-well format. A benefit of miniaturisation and automation is that screening can be performed in parallel on a wild-type and a catalytically inactive nsp5, which improves the selectivity of the assay. We performed molecular docking-based screening on a set of 14,468 compounds from an in-house chemical database, selected 359 candidate nsp5 inhibitors and tested them experimentally. We identified two molecules which show anti-nsp5 activity, both in our cell-based assay and in vitro on purified nsp5 protein, and inhibit SARS-CoV-2 replication in A549-ACE2 cells with EC50 values in the 4-8 µM range. The here described high-throughput-compatible assay will allow the screening of large-scale compound libraries for SARS-CoV-2 nsp5 inhibitors. Moreover, we provide evidence that this assay can be adapted to other coronaviruses and viruses which rely on a viral protease.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Humanos , Luciferasas/genética , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Proteasas Virales
8.
Viruses ; 14(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1715766

RESUMEN

Stephen Oroszlan received his early education in Hungary, graduating in 1950 from the Technical University in Budapest with a degree in chemical engineering [...].


Asunto(s)
Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Retroviridae/efectos de los fármacos , Retroviridae/metabolismo , Inhibidores de Proteasa Viral/farmacología , Proteasas Virales/química , Proteasas Virales/metabolismo
9.
Viruses ; 13(11)2021 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1538549

RESUMEN

A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.


Asunto(s)
Infecciones por VIH/virología , VIH-1 , Proteínas de la Nucleocápside/inmunología , Proteasas Virales/inmunología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Ensamble de Virus
10.
Front Immunol ; 12: 769543, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1520098

RESUMEN

Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.


Asunto(s)
Sistema Inmunológico/inmunología , Proteasas Virales/inmunología , Animales , Evolución Molecular , Especificidad del Huésped/genética , Especificidad del Huésped/inmunología , Humanos , Proteasas Virales/genética , Proteínas Virales/genética , Proteínas Virales/inmunología
11.
Chem Commun (Camb) ; 57(82): 10771-10774, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1442812

RESUMEN

We have established a new protocol for detecting severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) using a peptidomimetic to covalently detect a viral marker protease.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Proteasas Virales/aislamiento & purificación , Bioensayo/economía , Técnicas Biosensibles/economía , COVID-19/sangre , COVID-19/virología , Prueba de COVID-19/economía , Ahorro de Costo , Técnicas Electroquímicas/economía , Humanos , Peptidomiméticos/química , Tirosina/química , Proteasas Virales/química
12.
Viruses ; 13(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1441885

RESUMEN

Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.


Asunto(s)
Antivirales/farmacología , Inhibidores de Proteasa Viral/farmacología , Proteasas Virales/metabolismo , Virosis/tratamiento farmacológico , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/metabolismo , Flavivirus/efectos de los fármacos , Flavivirus/metabolismo , VIH-1/efectos de los fármacos , Herpesviridae/efectos de los fármacos , Herpesviridae/metabolismo , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteasas Virales/biosíntesis
13.
Nat Commun ; 12(1): 5553, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1434104

RESUMEN

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Asunto(s)
Antivirales/farmacología , COVID-19/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Línea Celular , Dipéptidos/farmacología , Humanos , Mutación , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteolisis , Proteómica , ARN Interferente Pequeño/farmacología , SARS-CoV-2/genética , Proteasas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Tratamiento Farmacológico de COVID-19
14.
J Pharmacol Exp Ther ; 378(2): 166-172, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1403003

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a global threat since its emergence. Although several COVID-19 vaccines have become available, the prospective timeframe for achieving effective levels of vaccination across global populations remains uncertain. Moreover, the emergence of SARS-CoV-2 variants presents continuing potential challenges for future vaccination planning. Therefore, development of effective antiviral therapies continues to be an urgent unmet need for COVID-19. Successful antiviral regimens for the treatment of human immunodeficiency virus and hepatitis C virus infections have established viral proteases as validated targets for antiviral drug development. In this context, we review protease targets in drug development, currently available antiviral protease inhibitors, and therapeutic development efforts on SARS-CoV-2 main protease and papain-like protease. SIGNIFICANCE STATEMENT: Coronavirus disease 2019 (COVID-19) continues to be a global threat since its emergence. The development of effective antiviral therapeutics for COVID-19 remains an urgent and long-term need. Because viral proteases are validated drug targets, specific severe acute respiratory syndrome coronavirus 2 protease inhibitors are critical therapeutics to be developed for treatment of COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Desarrollo de Medicamentos , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Animales , Antivirales/uso terapéutico , Humanos , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/efectos de los fármacos
15.
Nat Commun ; 12(1): 668, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1387328

RESUMEN

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , SARS-CoV-2/efectos de los fármacos , Proteasas Virales/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , Indoles/farmacología , Piridinas/farmacología , Células Vero , Proteasas Virales/metabolismo
16.
ACS Infect Dis ; 7(6): 1483-1502, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1387146

RESUMEN

Viral proteases are highly specific and recognize conserved cleavage site sequences of ∼6-8 amino acids. Short stretches of homologous host-pathogen sequences (SSHHPS) can be found spanning the viral protease cleavage sites. We hypothesized that these sequences corresponded to specific host protein targets since >40 host proteins have been shown to be cleaved by Group IV viral proteases and one Group VI viral protease. Using PHI-BLAST and the viral protease cleavage site sequences, we searched the human proteome for host targets and analyzed the hit results. Although the polyprotein and host proteins related to the suppression of the innate immune responses may be the primary targets of these viral proteases, we identified other cleavable host proteins. These proteins appear to be related to the virus-induced phenotype associated with Group IV viruses, suggesting that information about viral pathogenesis may be extractable directly from the viral genome sequence. Here we identify sequences cleaved by the SARS-CoV-2 papain-like protease (PLpro) in vitro within human MYH7 and MYH6 (two cardiac myosins linked to several cardiomyopathies), FOXP3 (an X-linked Treg cell transcription factor), ErbB4 (HER4), and vitamin-K-dependent plasma protein S (PROS1), an anticoagulation protein that prevents blood clots. Zinc inhibited the cleavage of these host sequences in vitro. Other patterns emerged from multispecies sequence alignments of the cleavage sites, which may have implications for the selection of animal models and zoonosis. SSHHPS/nsP is an example of a sequence-specific post-translational silencing mechanism.


Asunto(s)
Papaína , Péptido Hidrolasas , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Secuencia de Aminoácidos , Miosinas Cardíacas/química , Factores de Transcripción Forkhead/química , Humanos , Cadenas Pesadas de Miosina/química , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Proteína S/química , Receptor ErbB-4/química
17.
J Phys Chem Lett ; 12(1): 65-72, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1387117

RESUMEN

We analyzed a 100 µs MD trajectory of the SARS-CoV-2 main protease by a non-parametric data analysis approach which allows characterizing a free energy landscape as a simultaneous function of hundreds of variables. We identified several conformations that, when visited by the dynamics, are stable for several hundred nanoseconds. We explicitly characterize and describe these metastable states. In some of these configurations, the catalytic dyad is less accessible. Stabilizing them by a suitable binder could lead to an inhibition of the enzymatic activity. In our analysis we keep track of relevant contacts between residues which are selectively broken or formed in the states. Some of these contacts are formed by residues which are far from the catalytic dyad and are accessible to the solvent. Based on this analysis we propose some relevant contact patterns and three possible binding sites which could be targeted to achieve allosteric inhibition.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1323269

RESUMEN

In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , Evaluación Preclínica de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Máquina de Vectores de Soporte , Antivirales/farmacología , COVID-19/virología , Inhibidores de Proteasa de Coronavirus/metabolismo , Bases de Datos Farmacéuticas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas , Aprendizaje Automático Supervisado , Proteínas no Estructurales Virales/metabolismo , Proteasas Virales/metabolismo
19.
Expert Rev Clin Pharmacol ; 14(10): 1305-1315, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1322577

RESUMEN

BACKGROUND: The high transmission and pathogenicity of SARS-CoV-2 has led to a pandemic that has halted the world's economy and health. The newly evolved strains and scarcity of vaccines has worsened the situation. The main protease (Mpro) of SARS-CoV-2 can act as a potential target due to its role in viral replication and conservation level. METHODS: In this study, we have enlisted more than 1100 phytochemicals from Asian plants based on deep literature mining. The compounds library was screened against the Mpro of SARS-CoV-2. RESULTS: The selected three ligands, Flemichin, Delta-Oleanolic acid, and Emodin 1-O-beta-D-glucoside had a binding energy of -8.9, -8.9, -8.7 KJ/mol respectively. The compounds bind to the active groove of the main protease at; Cys145, Glu166, His41, Met49, Pro168, Met165, Gln189. The multiple descriptors from the simulation study; root mean square deviation, root mean square fluctuation, radius of gyration, hydrogen bond, solvent accessible surface area confirms the stable nature of the protein-ligand complexes. Furthermore, post-md analysis confirms the rigidness in the docked poses over the simulation trajectories. CONCLUSIONS: Our combinatorial drug design approaches may help researchers to identify suitable drug candidates against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Fitoquímicos/farmacología , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Antivirales/química , Bases de Datos de Compuestos Químicos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fitoquímicos/química , Proteasas Virales/genética
20.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1298153

RESUMEN

The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/enzimología , Proteasas Virales/química , Dominio Catalítico , Simulación de Dinámica Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Especificidad por Sustrato , Proteasas Virales/genética , Proteasas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA